Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Structural diversity, characterizing the volumetric capacity and physical arrangement of biotic components in an ecosystem, controls critical ecosystem functions like light interception, hydrology, and microclimate. This product generates structural diversity metrics for the NEON sites, sourced from the Discrete-Return LiDAR Point Cloud from the NEON Aerial Observation Platform (DP1.30003.001; collected in March 2023). Using R programming, we computed the metrics detailing height, heterogeneity, and density at 30 m, aligned to the Landsat grids, for 243 site years in 57 NEON sites from 2013 to 2022.more » « less
- 
            Abstract Moderate severity disturbances, those that do not result in stand replacement, play an essential role in ecosystem dynamics. Despite the prevalence of moderate severity disturbances and the significant impacts they impose on forest functioning, little is known about their effects on forest canopy structure and how these effects differ over time across a range of disturbance severities and disturbance types.Using longitudinal data from the National Ecological Observatory Network project, we assessed the effects of three moderate severity press disturbances (beech bark disease, hemlock woolly adelgid and emerald ash borer, which are characterized by continuous disturbance and sustained mortality) and three moderate severity pulse disturbances (spring cankerworm moth, spongy moth and ground fire, which are associated with discrete and relatively short mortalities) on temperate forest canopy structure in eastern US. We studied (1) how light detection and ranging (LiDAR)‐derived metrics of canopy structure change in response to disturbance and (2) whether initial canopy complexity offsets impact of disturbances on canopy structure over time. We used a mixed‐effects modelling framework which included a non‐linear term for time to represent changes in canopy structure caused by disturbance, and interactions between time and both disturbance intensity and initial canopy complexity.We discovered that high intensity of both press and pulse disturbances inhibited canopy height growth while low intensity pulse disturbances facilitated it. In addition, high intensity pulse disturbances facilitated increases in the complexity of the canopy over time. Concerning the impact of initial canopy complexity, we found that the initial canopy complexity of disturbed plots altered the effects of moderate disturbances, indicating potential resilience effects.Synthesis. This study used repeated measurements of LiDAR data to examine the effects of moderate disturbances on various dimensions of forest canopy structure, including height, openness, density and complexity. Our study indicates that both press and pulse disturbances can inhibit canopy height growth over time. However, while the impact of press disturbances on other dimensions of canopy structure could not be clearly detected, likely because of compensatory growth, the impact of pulse disturbances over time was more readily apparent using multi‐temporal LiDAR data. Furthermore, our findings suggest that canopy complexity might help to mitigate the impact of moderate disturbances on canopy structures over time. Overall, our research highlights the usefulness of multi‐temporal LiDAR data for assessing the structural changes in forest canopies caused by moderate severity disturbances.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
